Python SDK
Official Kairoz SDK for Python.
Python SDK
Access the Kairoz API easily and professionally using our official Python SDK. Here you'll find installation guides, configuration, and practical examples.
Installation
pip install kairozQuick Start
from kairoz import Kairoz
client = Kairoz("your-api-key")Configuration
You can configure the SDK using the constructor or environment variables:
- api_key: Your Kairoz API Key (
KAIROZ_API_KEY) - base_url: API base URL (optional, defaults to
https://api.kairozai.com) - max_retries: Maximum number of retries (optional, defaults to
2)
Example
from kairoz import Kairoz
client = Kairoz("your-api-key", base_url="https://api.kairozai.com", max_retries=3)Or using environment variables:
export KAIROZ_API_KEY=your-api-key
export KAIROZ_API_URL=https://api.kairozai.comUsage Guide
Getting a Prompt
prompt = client.get_prompt("prompt-name")
prompt_by_label = client.get_prompt("prompt-name", label="production")
prompt_by_version = client.get_prompt("prompt-name", version="2")Note: If the prompt does not exist (
404), the SDK raises an exception immediately and does not retry the request.
Creating a Prompt
Text Prompt
text_prompt = client.create_prompt(
name="greeting",
type="text",
prompt="Hello {{name}}!",
config={"temperature": 0.7},
labels=["greeting"]
)Chat Prompt
chat_prompt = client.create_prompt(
name="chat-assistant",
type="chat",
prompt=[
{"role": "system", "content": "You are a {{type}} assistant"},
{"role": "user", "content": "Hello {{name}}!"},
{"role": "assistant", "content": "How can I help you?"}
],
config={"temperature": 0.8},
labels=["chat", "assistant"]
)Formatting Prompts
You can replace variables in prompts using the format method, which returns a new Prompt instance with the formatted content.
Text
from kairoz import Kairoz
kairoz = Kairoz("your-api-key")
prompt = kairoz.get_prompt("greeting")
formatted_prompt = prompt.format(name="John", service="Kairoz")
# formatted_prompt is a new Prompt instance with the formatted content
print(formatted_prompt.prompt) # "Hello John! Welcome to Kairoz."Chat
kairoz = Kairoz("your-api-key")
prompt = kairoz.get_prompt("chat-greeting")
formatted_prompt = prompt.format(type="friendly", name="John")
# formatted_prompt is a new Prompt instance with the formatted messages
print(formatted_prompt.prompt)
# [
# {"role": "system", "content": "You are a friendly assistant"},
# {"role": "user", "content": "Hello John!"},
# {"role": "assistant", "content": "How can I help you?"}
# ]Additional Methods
validate()
The validate method ensures that the prompt object is correctly structured and raises an exception if any validation fails.
Example:
from kairoz.prompt import Prompt
prompt = Prompt(
name="example",
type="text",
prompt="Hello {{name}}!",
config={"temperature": 0.7},
labels=["example-label"]
)
try:
prompt.validate()
print("Prompt is valid")
except ValueError as error:
print("Validation failed:", error)to_dict()
The to_dict method converts a Prompt object into a plain dictionary that can be sent to the API.
Example:
prompt = Prompt(
name="example",
type="text",
prompt="Hello {{name}}!",
config={"temperature": 0.7},
labels=["example-label"]
)
prompt_data = prompt.to_dict()
print(prompt_data)
# Output:
# {
# "name": "example",
# "type": "text",
# "config": {"temperature": 0.7},
# "messages": [{"role": "user", "content": "Hello {{name}}!"}],
# "labels": ["example-label"]
# }from_dict()
The from_dict method populates a Prompt object from a plain dictionary.
Example:
prompt_data = {
"name": "example",
"type": "text",
"messages": [{"role": "user", "content": "Hello {{name}}!"}],
"config": {"temperature": 0.7},
"labels": ["example-label"]
}
prompt = Prompt.from_dict(prompt_data)
print(prompt)
# Output:
# <Prompt object with name="example", type="text", prompt="Hello {{name}}!">Tracing
The tracing module allows you to monitor and log the execution flow of your application, capturing valuable information about the performance and behavior of your code. Here’s how to use it.
Initialization
To start using tracing, you must first initialize the tracker with your API key.
from kairoz.tracking import initialize_tracking
initialize_tracking(api_key="your-api-key")Basic Usage
Tracing is implemented through context managers that allow you to wrap blocks of code to log traces, generations, and spans.
- Trace: Represents the complete execution flow of an operation.
- Generation: Used to log a generation from a language model (LLM).
- Span: A generic execution block that you can use to monitor any part of your code.
Complete Example
from kairoz.tracking import trace, initialize_tracking
initialize_tracking(api_key="your-api-key")
# Start a trace
with trace(
name="example-trace",
user_id="user-123",
session_id="session-abc",
metadata={"key": "value"},
tags=["tag1", "tag2"]
) as t:
# Log a generation within the trace
with t.generation(
name="example-generation",
model="gpt-4",
input_data={"prompt": "Hello world"},
metadata={"provider": "openai"}
) as g:
# Simulate an LLM call
output = "This is a generated response."
usage = {"input_tokens": 10, "output_tokens": 20}
# Update the generation with the result
g.update(output=output, usage=usage)
# Log a span within the trace
with t.span(
name="example-span",
input_data={"data": "some data"},
metadata={"source": "internal"}
) as s:
# Simulate an operation
result = "Processed data"
# Update the span with the result
s.update(output=result)Using OpenAI with Provider Fallback
The Kairoz SDK also provides a seamless way to use OpenAI-compatible APIs with automatic fallback to other providers.
Basic Setup
from kairoz import KairozOpenAI, Providers
# Configure with primary and fallback providers
openai = KairozOpenAI(
primary=Providers.openai("your-openai-api-key"),
fallback=Providers.anthropic("your-anthropic-api-key"),
enable_logging=True,
)Chat Completions with Fallback
async def example_usage():
try:
# Chat completions with automatic fallback
chat_response = await openai.chat.completions.create(
model="gpt-4",
model_fallback="claude-3-5-sonnet-20240620",
messages=[{"role": "user", "content": "Hello, how are you?"}],
)
print("Chat response:", chat_response.choices[0].message.content)
except Exception as error:
print("Error:", error)
# Run the example
if __name__ == "__main__":
import asyncio
asyncio.run(example_usage())Available Providers
The SDK supports multiple providers that can be used as primary or fallback:
- OpenAI:
Providers.openai(api_key) - Anthropic:
Providers.anthropic(api_key) - Groq:
Providers.groq(api_key) - Together.ai:
Providers.together(api_key) - Azure OpenAI:
Providers.azure_openai(api_key, endpoint) - LM Studio:
Providers.lm_studio(api_key, base_url)
Advanced Configuration Examples
# OpenAI + Groq
openai_with_groq = KairozOpenAI(
primary=Providers.openai(process.env.OPENAI_API_KEY),
fallback=Providers.groq(process.env.GROQ_API_KEY),
enable_logging=True,
)
# Azure OpenAI + OpenAI
azure_with_openai = KairozOpenAI(
primary=Providers.azure_openai(process.env.AZURE_API_KEY, process.env.AZURE_ENDPOINT),
fallback=Providers.openai(process.env.OPENAI_API_KEY),
enable_logging=True,
)
# Local LM Studio + OpenAI
local_with_openai = KairozOpenAI(
primary=Providers.lm_studio('dummy-key', 'http://localhost:1234/v1'),
fallback=Providers.openai(process.env.OPENAI_API_KEY),
enable_logging=True,
)Complete Examples
Create and Use a Text Prompt
from kairoz import Kairoz
client = Kairoz("your-api-key")
prompt = client.create_prompt(
name="custom-greeting",
type="text",
prompt="Hello {{name}}! Welcome to {{service}}.",
config={"temperature": 0.7},
labels=["greetings"]
)
saved_prompt = client.get_prompt("custom-greeting")
formatted_prompt = saved_prompt.format(name="Mary", service="Kairoz")
print(formatted_prompt.prompt) # "Hello Mary! Welcome to Kairoz."Create and Use a Chat Prompt
from kairoz import Kairoz
client = Kairoz("your-api-key")
prompt = client.create_prompt(
name="chat-assistant",
type="chat",
prompt=[
{"role": "system", "content": "You are a {{type}} assistant"},
{"role": "user", "content": "Hi! My name is {{name}}"},
{"role": "assistant", "content": "How can I help you?"}
],
config={"temperature": 0.8},
labels=["chat", "assistant"]
)
saved_prompt = client.get_prompt("chat-assistant")
formatted_prompt = saved_prompt.format(type="friendly", name="Charles")
print(formatted_prompt.prompt)
# [
# {"role": "system", "content": "You are a friendly assistant"},
# {"role": "user", "content": "Hi! My name is Charles"},
# {"role": "assistant", "content": "How can I help you?"}
# ]Error Handling
- If the prompt does not exist (
404), the SDK raises an exception and does not retry the request. - If a text prompt is not a string:
"Text prompts must have a string prompt". - If a chat prompt is not a list:
"Chat prompts must have a list of messages". - If a message is missing
roleorcontent:"Each message must have 'role' and 'content' fields". - If a variable is missing during formatting:
"Variable '{name}' not found".
Additional Notes
- The SDK supports Python 3.7 and above.
- All main functions are synchronous and raise exceptions for errors.
- The SDK validates data before sending to the API and raises descriptive exceptions if something is wrong.